Definition of the Area of a Region in the Plane

Let f be continuous and non-negative (above the x-axis) on [a, b]. The area of the region bounded by the graph of f, the x-axis and the vertical lines x = a and x = b is

$$A = \lim_{n \to \infty} \sum_{i=1}^n f(c_i) \Delta x \text{ where } x_{i-1} \le c_i \le x_i \text{ and } \Delta x = \frac{b-a}{n}$$

(this is basically an infinite Riemann Sum)

We have used the limit of a sum to define the area of a plane region. (It can also be used to find volumes, surface area, average value, arc length, work, centroids, to name only a few.) The limit of a sum process can be cumbersome even with simple functions. The definite integral will now be defined in terms of the limit of a sum (the integration process is much easier than finding the limit of the sum).

Remember that the indefinite integral is really a family of curves. However, since the definite integral is a limit of a sum, it will therefore be a number, not a family of functions!

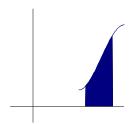
Informal Definition of Definite Integral

Suppose f is continuous for $a \le x \le b$. The definite integral from a to b is:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} L_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i-1}) \Delta x \quad \text{OR} \quad \int_{a}^{b} f(x) dx = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

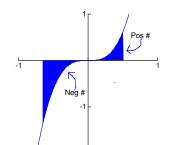
f(x) is called the integrand, a and b are called the limits of integration.

Up to this point, we have been looking a functions that were non-negative. This was because we were restricting our work with Riemann sums to finding area. We can integrate functions that go below the x-axis as long as we note:



When f(x) is positive of [a, b], (where a<b) the definite integral represents the area between the x-axis, the function and the lines x = a and

$$\int_{a}^{b} f(x) dx = shaded \ area$$



When f(x) is positive for some x-values and negative for others (goes below the x-axis) on [a, b], (where a
b)

 $\int_{a}^{b} f(x) dx$ is the sum of the area above the x-axis counted positively and the area below the x-axis counted negatively.

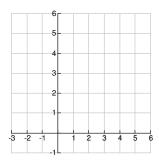
The Definite Integral as the Area of a Region

If f is continuous and non-negative on the closed interval [a, b], then the area of the region bounded by the graph of f, the x-axis and the vertical lines x=a and x=b is given by $\int_{a}^{b} f(x) \, dx$

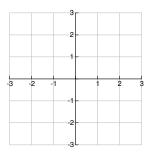
- The definite integral gives an area for a region only if the function is above the x-axis for the entire interval
- Otherwise, the integral will be positive when the area above the x-axis > the area below
- OR the integral will be negative when area above the x-axis < area below
- OR the integral will be zero when the area above the x-axis = area below

Sketch the shaded region whose area is represented by the following integrals, then use geometry to find the value of the integral

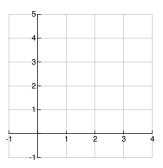
Example 1)
$$\int_{0}^{3} (x+2) dx$$



Example 2)
$$\int_{-2}^{2} \sqrt{4-x^2} \, dx$$



Example 3)
$$\int_{1}^{3} 4 \, dx$$



Continuity Implies Integrability

If a function is continuous on the closed interval [a, b], then it can be integrated on [a, b].

- From 2.1 we found that differentiability implied continuity
- Therefore, differentiability implies Integrability
- Beware: continuity does not imply differentiability and integrability does not imply continuity

Properties of Definite Integrals

- 1) If f is defined at x = a, then $\int_{a}^{a} f(x) dx = 0$
- 2) If f is integrable on [a, b], then $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$
- 3) If f is integrable on the three closed intervals determined by a, b, and c, then

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

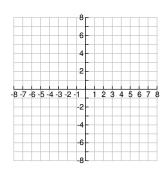
4) If f and g are integrable on [a, b] and k is a constant then the functions of k f and $f \pm g$ are integrable on [a, b] and

$$\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$$

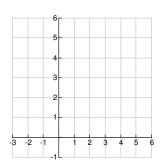
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

Sketch the region whose area is given by the definite integral, then use geometry to evaluate the integral.

Example 4)
$$\int_{-3}^{2} (2x) dx =$$



Example 5)
$$\int_{0}^{4} \frac{x}{2} dx =$$



Example 6) Given $\int_{0}^{5} f(x) dx = 10$ and $\int_{5}^{7} f(x) dx = 3$, find the following:

$$\mathbf{a)} \int\limits_0^7 f(x) \, dx$$

b)
$$\int_{5}^{0} f(x) dx$$

$$c) \int_{5}^{5} f(x) dx$$

d)
$$\int_{0}^{5} 3f(x) dx$$